Compactness and Symmetry in Quantum Logic

نویسندگان

  • Alexander Wilce
  • I. Helland
  • D. J. Foulis
  • C. H. Randall
چکیده

A particularly simple and flexible mathematical framework for the study of probability theory classical, quantum and otherwise is the notion of a test space, i.e., a collection of (possibly overlapping) discrete sample spaces (as developed in the 1970s and 80s by D. J. Foulis, C. H. Randall and others). “Quantum logics” arise quite naturally as invariants of test spaces; however, the latter are much easier both to interpret and to manipulate. After providing a tutorial on test spaces, I’ll outline how this framework can usefully be enriched by the addition of topological and covariant structure. In particular, I’ll discuss topological test spaces that are highly symmetrical under the action of a compact group

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the compactness property of extensions of first-order G"{o}del logic

We study three kinds of compactness in some variants of G"{o}del logic: compactness,entailment compactness, and approximate entailment compactness.For countable first-order underlying language we use the Henkinconstruction to prove the compactness property of extensions offirst-order g logic enriched by nullary connective or the Baaz'sprojection connective. In the case of uncountable first-orde...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Numerical Analysis of Stability for Temporal Bright Solitons in a PT-Symmetric NLDC

PT-Symmetry is one of the interesting topics in quantum mechanics and optics. One of the demonstration of PT-Symmetric effects in optics is appeared in the nonlinear directional coupler (NLDC). In the paper we numerically investigate the stability of temporal bright solitons propagate in a PT-Symmetric NLDC by considering gain in bar and loss in cross. By using the analytical solutions of pertu...

متن کامل

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003